Apprenticeship and Industry Training

Transport Refrigeration Technician Curriculum Guide

041 (2022)

ALBERTA ADVANCED EDUCATION

Transport refrigeration technician: apprenticeship education program curriculum guide

ISBN 978-1-4601-5222-5

ALL RIGHTS RESERVED

© 2022, Her Majesty the Queen in right of the Province of Alberta, as represented by the Minister of Advanced Education, 19th floor, Commerce Place, Edmonton, Alberta, Canada, T5J 4L5. All rights reserved. No part of this material may be reproduced in any form or by any means, without the prior written consent of the Minister of Advanced Education Province of Alberta, Canada.

Classification: Public

Transport Refrigeration Technician Table of Contents

Apprenticeship	2
Apprenticeship and Industry Training System	2
Apprenticeship Safety	3
Technical Training	3
Procedures for Recommending Revisions to the Curriculum Guide	3
Apprenticeship Route toward Academic Credential	4
Transport Refrigeration Technician Training Profile	5
CURRICULUM GUIDE First Period Technical Training	9
Second Period Technical Training	19
Third Period Technical Training.	26

Apprenticeship

Apprenticeship is post-secondary education with a difference. Apprenticeship begins with finding a sponsor. Sponsors guide apprentices, and support on-the-job learning through provision of mentorship. Approximately 80 per cent of an apprentice's time is spent on the job under the supervision of a certified journeyperson or qualified tradesperson. The other 20 per cent involves technical training provided at, or through, a post-secondary institution (PSI) – usually a college or technical institute.

To receive their post-secondary credential, apprentices must learn theory and skills, and they must pass examinations. Criteria for the program—including the content and delivery of technical training—are developed and updated by the Registrar.

The graduate of the Transport Refrigeration Technician apprenticeship program is an individual who will be able:

- to diagnose repair, maintain and operate transport refrigeration equipment used to heat or cool the load as well as of diesel engines, APUs and other prime movers
- to use tools and equipment in order to carry out repairs according to manufacturer's
- to read and understand work orders, prepare estimates, interpret technical references and diagrams
- to download data from monitoring systems to diagnose problems and set parameters for proper operation
- to write work orders and update maintenance logs
- to be familiar with the work in related trades such as machinist, heavy equipment technician and welder
- to be familiar with and apply all regulations and legislation associated with the industry
- to perform assigned tasks in accordance with quality and production standards required by industry

Apprenticeship and Industry Training System

Alberta's apprenticeship programs are supported by industry stakeholders that ensures a highly skilled, internationally competitive workforce in the province. The Registrar establishes the educational standards and provides direction to the system supported by industry and the PSI's. The Ministry of Advanced Education provides the legislative framework and administrative support for the apprenticeship and industry training system.

Special thanks are offered to the following industry members who contributed to the development of the standard:

Mr. R. Fleming Calgary
Mr. J. Schmode Calgary
Mr. D. Mueller High River
Mr. L. Brugess Ft. McMurray.
Mr. J. Winfield Calgary
Mr. M. Purcell Ft. McMurray

Alberta Government

Alberta Advanced Education works with industry, sponsor and employee organizations and technical training providers to:

- facilitate industry's development and maintenance of training and certification standards
- provide registration and counselling services to apprentices and sponsors
- coordinate technical training in collaboration with training providers
- certify apprentices and others who meet industry standards

Apprenticeship Safety

Safe working procedures and conditions, incident/injury prevention, and the preservation of health are of primary importance in apprenticeship programs in Alberta. These responsibilities are shared and require the joint efforts of government, sponsors, employees, apprentices and the public. Therefore, it is imperative that all parties are aware of circumstances that may lead to injury or harm.

Safe learning experiences and healthy environments can be created by controlling the variables and behaviours that may contribute to or cause an incident or injury. By practicing a safe and healthy attitude, everyone can enjoy the benefit of an incident and injury free environment.

Occupational Health and Safety

Persons engaged in, or supporting an individual in an experiential learning environment are often exposed to more worksite hazards than in other forms of traditional post-secondary education and therefore should be familiar with and apply the Occupational Health and Safety Act, Regulations and Code when dealing with personal safety and the special safety rules that apply to all daily tasks.

Occupational Health and Safety-OHS (a division of Alberta Labour and Immigration) conducts periodic inspections of workplaces to ensure that safety regulations for industry are being observed.

Additional information is available at www.alberta.ca/occupational-health-safety.aspx

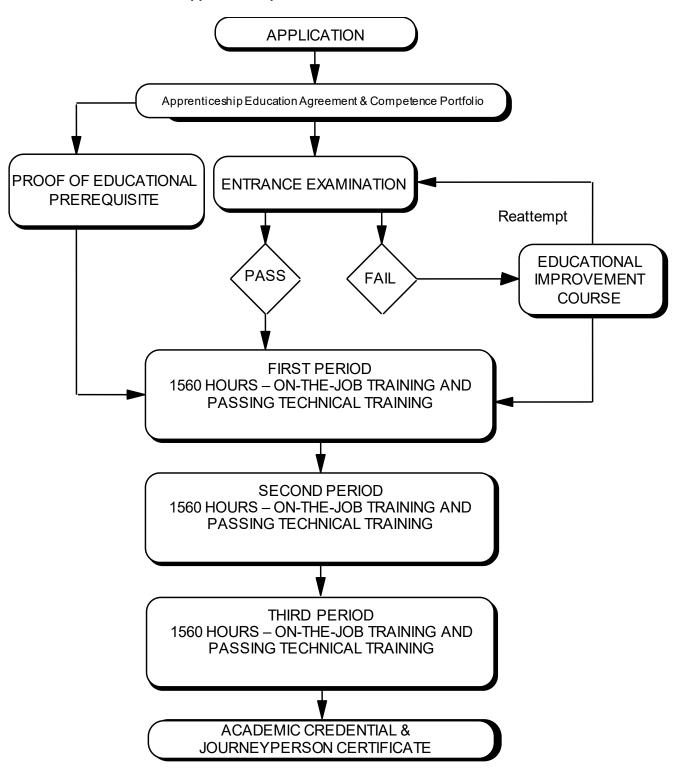
Technical Training

Apprenticeship technical training is delivered by the PSI's throughout Alberta. The PSI's are committed to delivering the technical training component of Alberta apprenticeship programs in a safe, efficient and effective manner. All PSI's place a strong emphasis on safety that complements safe workplace practices towards the development of a culture of safety for all professions.

The PSI's work with industry and Alberta Advanced Education to enhance access and responsiveness to industry needs through the delivery of the technical training component of apprenticeship programs across the province. They develop curriculum from the curriculum guides established by the Registrar in consultation with the PSI's and industry and provide the technical training to apprentices.

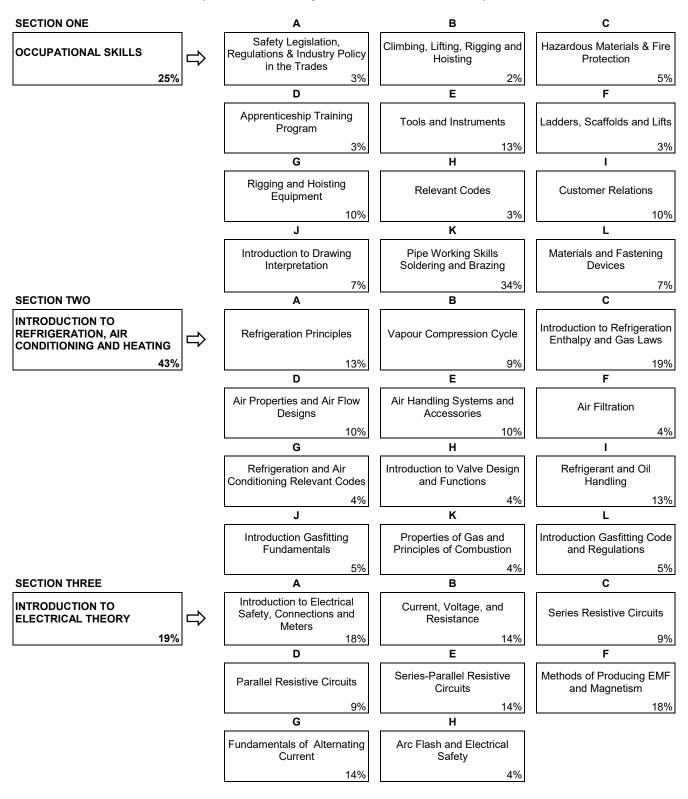
The following PSI's deliver Transport Refrigeration Technician trade apprenticeship technical training:

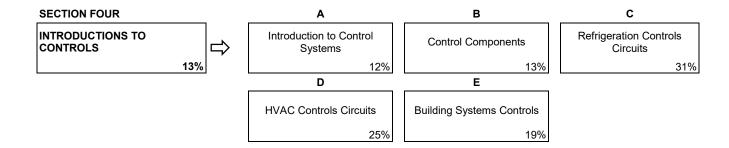
Southern Alberta Institute of Technology (Main Campus) Northern Alberta Institute of Technology (Main Campus) (periods one and three)

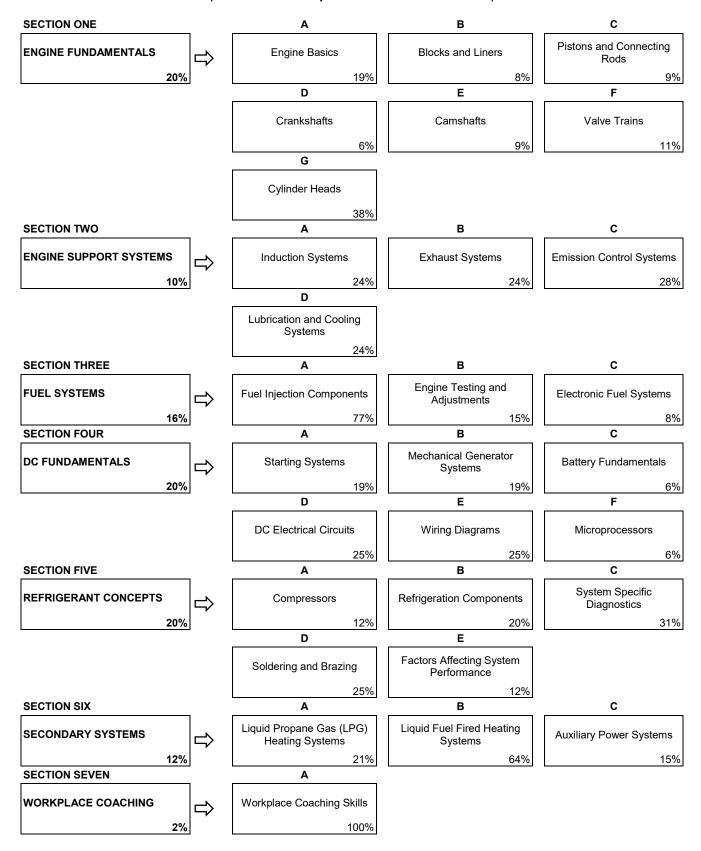

Procedures for Recommending Revisions to the Curriculum Guide

Any concerned individual or group in the province of Alberta may make recommendations for change by writing to:

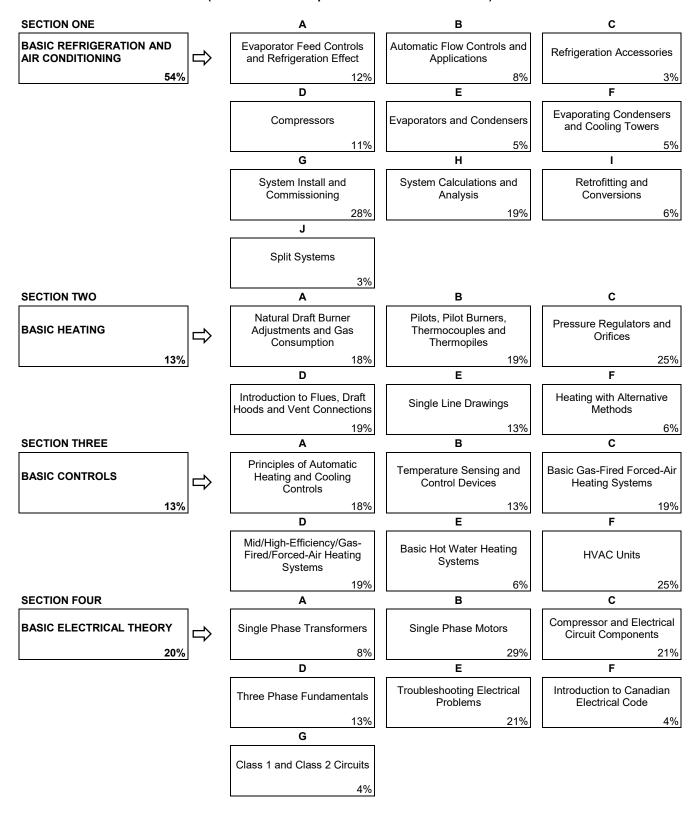
Registrar of Apprenticeship Programs c/o Apprenticeship Delivery and Industry Support Services Apprenticeship Delivery and Industry Support Advanced Education 19th floor, Commerce Place 10155 102 Street NW Edmonton AB T5J 4L5


It is requested that recommendations for change refer to specific areas and state references used.


Apprenticeship Route toward Academic Credential


Transport Refrigeration Technician Training Profile FIRST PERIOD

(8 Weeks 30 Hours per Week - Total of 240 Hours)



SECOND PERIOD (8 Weeks 30 Hours per Week – Total of 240 Hours)

THIRD PERIOD (8 Weeks 30 Hours per Week – Total of 240 Hours)

FIRST PERIOD TECHNICAL TRAINING TRANSPORT REFRIGERATION TECHNICIAN TRADE CURRICULUM GUIDE

UPON SUCCESSFUL COMPLETION OF THIS PROGRAM THE APPRENTICE SHOULD BE ABLE TO PERFORM THE FOLLOWING OUTCOMES AND OBJECTIVES.

SEC	TION	ONE:	2	5%
A.	Safe	ety Legisla	ation, Regulations & Industry Policy in the Trades	3%
	Ou	tcome:	Apply legislation, regulations and practices ensuring safe work in this trade.	
	1.	Demonstr	rate the application of the Occupational Health and Safety Act, Regulation and Code.	
	2.	Worksite	the sponsor's and employee's role with Occupational Health and Safety (OH&S) regulation. Hazardous Materials Information Systems (WHMIS), fire regulations, Workers Compensity and related advisory bodies and agencies.	
	3.	Describe	industry practices for hazard assessment and control procedures.	
	4.	Describe	the responsibilities of worker and sponsors to apply emergency procedures.	
	5.		tradesperson attitudes with respect to housekeeping, personal protective equipment and cy procedures.	
	6.		the roles and responsibilities of sponsors and employees with the selection and use of protective equipment (PPE).	
	7.	Maintain r	required PPE for tasks.	
	8.	Use requi	ired PPE for tasks.	
В.	Clin	nbing, Lifti	ing, Rigging and Hoisting	2%
	Ou	tcome:	Use industry standard practices for climbing, lifting, rigging and hoisting in this trade.	
	1.	Describe	manual lifting procedures.	
	2.	Describe	rigging hardware and associated safety factors.	
	3.	Select eq	uipment for rigging loads.	
	4.	Describe	hoisting and load moving procedures.	
	5.	Maintain բ	personal protective equipment (PPE) for climbing, lifting and load moving equipment.	
	6.	Use PPE	for climbing, lifting and load moving equipment.	
C.	Haz	ardous Ma	aterials & Fire Protection	5%
	Ou	tcome:	Apply industry standard practices for hazardous materials and fire protection in trade.	this
	1.		roles, responsibilities, features and practices related to the Workplace Hazardous Materion System (WHMIS) program.	als
	2.	Describe	three key elements of WHMIS.	
	3.	Describe	handling, storing and transporting procedures for hazardous material.	
	4.	Describe	venting procedures when working with hazardous materials.	
	5.	Describe	hazards, classes, procedures and equipment related to fire protection.	

D.	App	renticeshi	p Training Program	3%
	Out	come:	Manage an apprenticeship to earn journeyperson certification.	
	1.	Describe Industry	the contractual responsibilities of the apprentice, sponsor and Alberta Apprenticeshi Training.	p and
	2.	Describe	the purpose of the apprentice competency portfolio.	
	3.	Describe	the procedure for changing sponsors during an active apprenticeship.	
	4.	Describe	the purpose of the curriculum guide.	
	5.	Describe	the procedure for advancing through apprenticeship.	
	6.	Describe	advancement opportunities in this trade.	
E.	Tool	s and Inst	ruments	13%
	Out	come:	Use hand tools and power tools.	
	1.	Describe	types, uses and care of hand, power tools and equipment.	
	2.	Demons	trate the use of hand tools and power tools used in the industry.	
	3.	Demons	trate proper connections of refrigeration gauges and operation of service valves.	
	4.	Perform	calculations related to measurement using imperial and metric units.	
F.	Lado	ders, Scaf	folds and Lifts	3%
	Out	come:	Use ladders, scaffolds and lifts.	
	1.	Describe	the use of various types of ladders.	
	2.	Describe	the use of various types of scaffolds.	
	3.	Describe	the use of various types of lifts.	
G.	Rigg	jing and H	oisting Equipment	10%
	Out	come:	Use rope and rigging components to hoist equipment.	
	1.	Describe	the various types, parts, care and maintenance of natural and synthetic rope.	
	2.	Identify a	and describe the proper procedure for tying popular knots, and hitches.	
	3.	Describe	types, parts and care and maintenance of wire ropes.	
	4.	Name di	fferences between chain falls, come-a-longs, tirfors and snatch blocks.	
	5.	Describe compone	characteristics of safe workloads of slings used for hoisting pipe, appliances and ents.	
	6.	Describe	hand signals when directing a crane.	
	7.	Demons	trate tying of knots and hitches.	
н.	Rele	vant Code	es	3%
	Out	come:	Apply codes used in the refrigeration and air conditioning (RAC) industry.	
	1.	Describe	the refrigeration codes that apply to RAC work.	
	2.	Describe	the gas codes that apply to RAC work.	
	3.	Describe	the plumbing codes that apply to RAC work.	

	4.	Describe	the electrical codes that apply to RAC work.	
	5.	Describe	the sheet metal codes that apply to RAC work.	
I.	Cust	tomer Rela	ations10	%
	Outcome:		Demonstrate effective customer relations. 1. Describe effective communication techniques.	
	2.	Describe	e methods used to determine customers' needs.	
	3.	Describe	e customer reporting methods.	
	4.	Describe	job completion strategies.	
J.	Intro	duction to	Drawing Interpretation7	%
	Outcome:		Interpret basic drawing information.	
	1.	Use basi	c information found on drawings.	
	2.	Interpret	basic drawings.	
	3.	Identify o	common symbols used in drawings and legends.	
	4.	Identify a	abbreviations used in drawings.	
K.	Pipe	Working	Skills, Soldering and Brazing34	%
	Out	come:	Apply pipe working skills on refrigeration, gas and plumbing pipe.	
	1.	Describe	tools, equipment and material used for pipe work.	
	2.	Describe	tools and equipment used for soldering.	
	3.	Describe	tools and equipment used for brazing.	
	4.	Describe	e oxyfuel equipment components, functions and maintenance.	
	5.	Describe	procedures of oxyfuel equipment use.	
	6.	Demonst	trate use of tools, equipment and material for pipe work.	
	7.	Demonst	trate use of tools and equipment for soldering.	
	8.	Demonst	trate use of tools and equipment for brazing.	
	9.	Demonst	trate oxyfuel leak detection, adjusting, operating, and shutdown procedures.	
L.	Mate	erials and	Fastening Devices7	%
	Out	come: Us	e materials and fasteners commonly used in the industry.	
	1.	Describe	metallic and non-metallic materials' characteristics and applications.	
	2.	Describe	types of threaded fasteners and their applications.	
	3.	Describe	thread repair methods.	
	4.	Describe	types of non-threaded fasteners and their applications.	
	5.	Demonst	trate removal of seized and damaged fasteners.	

SEC	TION	I TWO: IN	TRODUCTION TO REFRIGERATION, AIR CONDITIONING AND HEATING	43%
A.	Ref	rigeration	Principles	13%
	Ou	tcome:	Explain the basic operation of a refrigeration system.	
	1.	Define t	he terms related to refrigeration principles.	
	2.	Describe	e the basic concepts of heat transfer.	
	3.	Describe	e methods of heat transfer.	
	4.	Describe	e the laws of thermal dynamics.	
	5.	Describe	e the units of measure pertaining to heat transfer.	
	6.	Describe	e the function of refrigeration in transportation.	
	7.	Perform	calculations related to heat transfer.	
	8.	Convert	temperatures and pressures between various scales.	
В.	Vap	our Comp	ression Cycle	9%
		tcome:	Explain the vapour compression cycle.	
	1.		e the basic concepts of the vapour compression cycle.	
	2.		e the four essential components of a refrigeration system.	
	3.		e the stages of the refrigeration cycle.	
	4.		e the basic operating principles and applications of multiple evaporator systems.	
	5.		e the basic difference between single and multiple evaporator systems.	
	6.		e the refrigeration cycle on a working system.	
	7.		strate the operation of a refrigeration system using a diagram.	
C.	Intr	oduction t	o Refrigeration Enthalpy and Gas Laws	19%
	Ou	tcome:	Apply gas laws and pressure enthalpy charts to refrigeration systems.	
	1.	Define te	rms used in refrigeration and heating.	
	2.	Describe	gas laws and how they apply to thermal dynamics.	
	3.	Describe	fluids and fluid piping systems as it relates to refrigeration systems.	
	4.	Describe	the units of measurement used in refrigeration calculations.	
	5.	Apply for	mulas used in calculating gas laws and pressure enthalpy.	
	6.	Describe	the components of a pressure enthalpy diagram.	
	7.	Plot a ba	sic cycle using a pressure enthalpy diagram.	
	8.	Demonst	rate use of formulas for calculating gas laws and pressure enthalpy.	
D.	Air	Properties	and Air Flow Designs	10%
	Ou	tcome:	Apply the properties of air as it relates to basic air flow design.	
	1.	Describe	air properties as it relates to heat transfer.	
	2.	Describe	methods of heat transfer as they relate to air flow.	
	3.	Describe	units of measurement as it relates to air properties.	

	4.	Describe r	methods used in calculating air flow design.	
	5.	Calculate	air flow required for a given heat transfer system.	
	6.	Describe p	psychometrics.	
	7.	Describe t	the meaning, function and uses of psychometric charts.	
	8.	Plot and ir	nterpret a psychometric chart.	
E.	Air	Handling S	systems and Accessories	10%
	Ou	tcome:	Service air handling systems and accessories.	
	1.	Describe a	air handling systems.	
	2.	Describe a	air handling systems components.	
	3.	Describe a	air handling accessories.	
	4.	Describe a	air handling equipment maintenance requirements.	
	5.	Define ter	ms and components used in fans, belts and mechanical drives.	
	6.	Demonstr	ate fan belt installation and mechanical drive alignment.	
F.	Air	Filtration		4%
	Ou	tcome:	Analyze efficiencies of air filtration systems.	
	1.	Define ter	ms related to filtration.	
	2.	Define filtr	ration components and their application.	
	3.	Describe t	the operation and efficiency of air filters.	
	4.	Calculate	velocities and pressure drops through filters.	
G.	Ref	rigeration a	and Air Conditioning Relevant Codes	4%
	Ou	tcome:	Apply how the B52 Mechanical Refrigeration Code and the Canadian Code of Practice in the Refrigeration and Air Conditioning industry work in Alberta.	
	1.	Explain th	e scope and jurisdiction of the different codes.	
	2.	Describe l	now the B52 relates to the Refrigeration and Air Conditioning industry.	
	3.	Describe l	now the Canadian Code of Practice relates to the Refrigeration and Air Conditioning indu	ıstry.
	4.		ate how the B52 is used in determining minimum standards in a refrigeration and air ng install and maintenance work.	
	5.		ate how the Canadian Code of Practice is used in determining minimum standards in a on and air conditioning install and maintenance work.	
Н.	Intr	oduction to	Valve Design and Functions	4%
	Ou	tcome:	Maintain or repair valves in RAC systems.	
	1.	Describe (general valve designs.	
	2.	Describe a	applications of various valves.	
	3.	Describe v	valve designs for various refrigeration system applications.	
	4.	Describe t	the purpose, types and procedures for service valves.	

	5. Describe the purpose, types, construction, location and operation of suction-throttling valves.				
	6.	Demonstrate operation of service valves.			
I.	Ref	rigerant and Oil Handling	13%		
	Out	tcome: Handle refrigerant and refrigeration oil safely.			
	1.	Describe the evolution and properties of refrigerants and their oils.			
	2.	Describe the safe handling and storage of refrigerants and refrigeration oils.			
	3.	Describe the safe recovery and deposal of refrigerants and refrigeration oils.			
	4.	Describe leak testing methods and instruments used.			
	5.	Describe the evacuation process of refrigeration systems.			
	6.	Describe non OEM refrigerant products available in the industry.			
	7.	Demonstrate the safe recovery and deposal of refrigerants.			
	8.	Demonstrate the safe recovery and deposal of refrigeration oils.			
	9.	Demonstrate leak testing methods and instruments used.			
	10.	Demonstrate the evacuation process of refrigeration systems.			
	11.	Demonstrate the proper maintenance procedures of recovery and evacuation equipment.			
	12.	Demonstrate cleaning procedures for a contaminated system.			
	13.	Complete Heating Refrigeration Air Conditioning Institute (HRAI) refrigerant handling training.			
J.	Intro	oduction to Gasfitting Fundamentals	. 5%		
	Out	tcome: Explain and identify basic gas fundamentals and the purpose, legal status and organization of CAN/CSA Natural Gas and Propane Installation Codes B149.1, B149.2 and the Gas Bulletins.			
	1.	Describe historical foundations, career opportunities and trade regulatory structure.			
	2.	Describe production, distribution and storage of natural gas.			
	3.	Describe production, distribution and storage of propane gas.			
	4.	State regulations pertaining to the general requirements of the gasfitter trade.			
	5.	Interpret regulations pertaining to the gasfitter trade.			
K.	Pro	perties of Gas and Principles of Combustion	. 4%		
	Out	tcome: Explain basic gas fundamentals.			
	1.	Identify chemical formulas used by the Refrigeration and Air Conditioning Mechanic trade.			
	2.	Describe the relative densities, liquefaction ratios and heating value of gases.			
	3.	Calculate appliance input values using properties of gases.			
	4.	Identify definitions specific to combustion.			
	5.	Explain the principles of combustion as a chemical change.			

- 6. Describe the products of complete and incomplete combustion.
- 7. Describe the requirements for combustion air.
- 8. Describe flame adjustment techniques and correct safety practices when adjusting gas-fired equipment.

Outcome:

Apply standards pertaining to the installation of piping and tubing systems for various conditions of use in accordance with the CAN/CSA B149.1 Natural Gas and Propane Installation Codes (Sections 1-4) and B149.2 Propane Storage and Handling and the Gas Safety Information Bulletins.

- Describe the regulations contained in the scope section of the CAN/CSA B149.1 Natural Gas and Propane Installation Codes, amendments to the code and the regulations pertaining to installers responsibilities.
- 2. List the regulations contained in the CAN/CSA B149.1 Natural Gas and Propane Installation Codes (Sections 1-4) and B149.2 Propane Storage and Handling and the Gas Safety Information Bulletins pertaining to installation of piping and fittings.
- 3. List the regulations contained in the CAN/CSA B149.1 Natural Gas and Propane Installation Codes (Sections 1-4) and B149.2 Propane Storage and Handling and the Gas Safety Information Bulletins pertaining to testing of piping and fittings.
- 4. List the regulations contained in the CAN/CSA B149.1 Natural Gas and Propane Installation Codes (Sections 1-4) and B149.2 Propane Storage and Handling and the Gas Safety Information Bulletins pertaining to purging of piping and fittings.
- 5. Describe safety practices to be used pertaining to installation of piping and fittings.
- 6. Describe safety practices to be used pertaining to testing of piping and fittings.
- 7. Describe safety practices to be used pertaining to purging of piping and fittings.

Outcome: Use safe work practices on electrically energized equipment.

- 1. Describe the hazards related to working with electrical circuits.
- 2. Describe safety precautions when working with electrical circuits.
- 3. Describe the physical properties of conductors, semiconductors and insulators.
- 4. Describe lockout tag out procedures related to working on electrical equipment.
- 5. Describe types of electrical connections.
- 6. State the applications of the various meters.
- 7. List the care and precautions associated with using meters.
- 8. Identify the connections for meters.
- 9. Demonstrate electrical connections.
- Demonstrate range selection and connections of voltmeter, ammeter, ohmmeter and insulation testers.

В.	Current, Voltage, and Resistance14%				
	Outcome:		Apply knowledge of voltage, current and resistance and determine how changing the value of any one of them affects the circuit.		
	1.	Describe	an electric current.		
	2.	Describe	voltage, current and power.		
	3.	Describe	resistance and state and apply Ohm's Law.		
	4.	Connect	and verify relationships between voltage, current and resistance according to Ohm's Law	/ .	
C.	Seri	es Resistiv	/e Circuits	. 9%	
	Out	come:	Connect a series resistive circuit and analyze the relationships between current, resistance and voltage.		
	1.	Define a	series circuit.		
	2.	Apply the	e formula for total resistance in a series circuit.		
	3.	Apply Kir	chhoff's voltage law to a series circuit.		
	4.	Determin	e the voltage drop across a closed-or-open-circuit component in a series circuit.		
	5.	Connect	and verify Kirchhoff's current and voltage laws in a series resistive circuit.		
D.	Para	llel Resist	ive Circuits	. 9%	
	Out	come:	Connect a parallel resistive circuit and analyze the relationships between curren resistance and voltage.	t,	
	1.	Define a	parallel circuit.		
	2.	Apply the	e formula for a total resistance in a parallel circuit.		
	3.	Apply Kir	chhoff's current law to a parallel circuit.		
	4.	Describe	the effects of open circuits on a parallel circuit.		
	5.	Connect	and verify Kirchhoff's current law in a parallel resistive circuit.		
E.	Serie	es-Parallel	Resistive Circuits	14%	
	Out	come:	Connect and analyze a series-parallel resistive circuit.		
	1.	Identify re	esistors that are in series.		
	2.	Identify re	esistors that are in parallel.		
	3.	Calculate	the total resistance of a series-parallel circuit.		
	4.	Apply Kir	chhoff's current law.		
	5.	Apply Kir	chhoff's voltage law.		
	6.	Solve pro	blems involving series-parallel circuits.		
	7.	Connect circuit.	and verify the relationship of current, voltage and resistance in each part of a series/para	llel	

F.	Meth	ods of P	roducing Electro Motive Force (EMF) and Magnetism	18%
	Out	come:	Apply knowledge of EMF when servicing RAC equipment.	
	1.	Describe	e the production of EMF by using chemicals.	
	2.	Describe	e the production of EMF by using heat.	
	3.	Describe	e the production of EMF by using pressure.	
	4.	Describe	e the production of EMF by using light.	
	5.	Describe	e the production of EMF by using magnetism.	
	6.	Describe	e the production of EMF by using electrostatics.	
	7.	Describe	e the properties of magnetic materials.	
	8.	Define t	he terminology related to magnetism.	
	9.	Describe	e electromagnetism and basic design considerations for electromagnetic devices.	
	10.	Describe	e how an induced voltage is generated.	
	11.	Describe	e the process of electromagnetic induction.	
G.	Fundamentals of Alternating Current			
	Out	come:	Apply knowledge of ac circuits when servicing RAC equipment.	
	1.	Describe	e the generation of an ac sine wave.	
	2.	Determi	ne the output frequency of an ac generator.	
	3.	Calculat	e standard ac sine wave values.	
	4.	Demons	strate the relationship between sine waves and phasor diagrams.	
	5.	List the	factors affecting impedance in an ac circuit.	
Н.	Arc I	Flash and	l Electrical Safety	4%
	Out	come:	Recognize arc flash hazards in electrical installations.	
	1.	Identify	the hazards associated with arc flash.	
	2.	Describe	e the personal protective equipment related to arc flash.	
	3.	Describe	e lockout procedures related to energized systems.	
SEC	CTION	FOUR:	INTRODUCTION TO CONTROLS	13%
A.	Intro	duction t	o Control Systems	12%
	Out	come:	Service control systems used for heating and cooling.	
	1.	Describe	e terminology used in control systems.	
	2.	Describe	e heating and cooling controls.	
	3.	Describe	e heating and cooling control systems.	
	4.	Interpret	t electrical diagrams used to show the function of a heating or cooling control system.	

B.	3. Control Components			13%
	Out	come:	Service components used in control systems.	
	1.	Describe	the components of heating and cooling systems.	
	2.	Describe	the construction of control system components.	
	3.	Describe	the application of control components for heating and cooling system.	
	4.	Describe	the operation of control system components.	
C.	Refri	igeration C	Control Circuits	31%
	Out	come:	Use control circuits for refrigeration systems.	
	1.	Describe	components used in control circuits for refrigeration systems.	
	2.	Describe	the differences between medium and low temperature control circuits.	
	3.	Describe	the components of a medium temperature control circuit.	
	4.	Describe	the components of a low temperature control circuit.	
	5.	Connect a	and verify operation of a medium temperature cooling control system.	
	6.	Connect	and verify operation of a low temperature cooling control system.	
D.	Heat	ing Ventila	ating Air Conditioning (HVAC) Control Circuits	25%
	Out	come:	Use control circuits for HVAC systems.	
	1.	Describe	components used in HVAC control circuits.	
	2.	Describe	the construction of HVAC control system components.	
	3.	Describe	the application of control components for HVAC system.	
	4.	Describe	the operation of HVAC control system components.	
	5.	Connect	and verify operation of a HVAC control system.	
E.	Build	ding Syste	ms Controls	19%
	Out	come:	Service building system control circuits.	
	2.	Describe	components used in building control circuits.	
	3.	Describe	components and their applications of a pneumatic control system.	
	4.	Describe	the construction of building control system components.	
	5.	Describe	the application of control components for building system.	
	6.	Describe	the operation of building control systems.	
	7.	Describe	other systems that affect building control systems.	

SECOND PERIOD TECHNICAL TRAINING TRANSPORT REFRIGERATION TECHNICIAN TRADE CURRICULUM GUIDE

UPON SUCCESSFUL COMPLETION OF THIS PROGRAM THE APPRENTICE SHOULD BE ABLE TO PERFORM THE FOLLOWING OUTCOMES AND OBJECTIVES.

SEC	TION	ONE:	20	0%
A.	Engine Basics		s	19%
	Outcome:		Explain the operating principles and design features of diesel engines.	
	1.	Describe	engine terms and definitions.	
	2. Describe		methods of classifying engines.	
	3.	Describe	the principles of operation for four stroke cycle engines.	
	4.	Compare	e prime mover technologies.	
В.	Blo	cks and L	iners	. 8%
	Ou	tcome:	Describe the functions and design of cylinder block assemblies.	
	1.	Describe	the functions, construction and design of engine cylinder blocks and liners.	
	2.	Inspect e	engine block and liners for problems and wear.	
	3.	Describe	cylinder block repair and reconditioning procedures.	
C.	Pistons and Connecting Rods			
	Ou	tcome:	Describe the functions and design of pistons, rings and connecting rods.	
	1.	Describe	the function, construction and design features of piston and connecting rod assemblies.	
	2.	Describe	inspection and measurement of piston and connecting rod assemblies.	
D.	Cra	nkshafts .		. 6%
	Ou	tcome:	Describe the functions and design of crankshafts and related components.	
	1.	Describe	the function, lubrication, design features of crankshafts and related components.	
	2.	Describe	methods used to achieve engine balance.	
	3.	Identify o	common crankshaft and bearing failures.	
	4.	Measure	a crankshaft to determine wear and serviceability.	
E.	Can	nshafts		. 9%
	Ou	tcome:	Describe the functions and design of camshafts and related components.	
	1.	Explain t	he function and design features of camshaft assemblies.	
	2.	Describe	camshaft drive mechanisms and timing	
	3.	Measure	a camshaft to determine wear and serviceability.	

F.	Valv	ve Trains		11%
	Ou	tcome:	Service valve train components.	
	1.	Describe	the design, construction and operation of valve trains and related components.	
	2.	Describe	the function and adjustment of the valves.	
	3.	Measure	valve train components to determine wear and serviceability.	
G.	Cyli	inder Head	s	38%
	Ou	tcome:	Service cylinder head components.	
	1.	Explain th	e function, construction and design features of cylinder heads.	
	2.	Identify cy	linder head sealing and retention devices.	
	3.	Demonstr	rate cylinder head removal, inspection, installation procedures and precautions.	
	4.	Diagnose	cylinder head problems.	
SEC	TION	I TWO:	ENGINE SUPPORT SYSTEMS	10%
A.	Indi	uction Sys	tems	24%
		tcome:	Service air induction systems and related components.	
	1.		the functions of air induction system components.	
	2.		the service procedures for air induction systems.	
	3.		the use of test equipment to measure air inlet restriction.	
В.	Evh		ems	24%
υ.				
		tcome:	Service exhaust systems and related components.	
	1.		the function and features of the exhaust system and components.	
	2.		rate removal and installation procedures for exhaust components.	
	3.	Describe	the need for venting the exhaust system gases.	
C.	Emi	ission Con	trol Systems	28%
	Ou	tcome:	Service emission control systems and related components.	
	1.	Describe	emission control systems, components, function and operation.	
	2.	Diagnose	and repair emission control systems.	
	3.	Test engi	ne exhaust temperature.	
D.	Lub	rication ar	nd Cooling Systems	24%
	Ou	tcome:	Diagnose lubrication and cooling systems faults.	
	1.	Describe	function and operation of lubrication system components.	
	2.	Demonstr	rate oil pressure test procedures.	
	3.	Repair lub	prication problems.	
	4	Describe :	functions and operations of cooling systems	

SEC	TION	THREE:	FUEL SYSTEMS16	3%
A.	Fuel	Injection (Components77	7%
	Out	come:	Perform service and repair on fuel injection systems.	
	1.	Describe t	he types, design, and operation of transfer pumps.	
	2.	Demonstra	ate diagnosis, removal and installation procedures for transfer pumps.	
	3.	Describe t	he demand requirements of an injection system.	
	4.	Describe t	he design, components, function and maintenance of fuel injection systems.	
	5.	Describe t	iming advance functions and operations.	
	6.	Demonstra	ate adjusting and timing procedures.	
	7.	Describe t	he designs, principle of operation, characteristics, and application of metering systems.	
	8.	Demonstra	ate removal and installation precautions.	
	9.	Demonstra	ate inspection and diagnosis procedures for injection systems.	
	10.	Demonstra	ate replacement and bleeding of injectors.	
	11.	Describe t	he characteristics and operation of governors.	
	12.	Diagnose	problems of governors.	
В.	Eng	ine Testing	g and Adjustments15	5%
	Out	come:	Perform engine testing and adjustments.	
	1.	Demonstra	ate start up, run-up, test and shut down procedures.	
	2.	Diagnose	incorrect operating conditions.	
	3.	Demonstra	ate repairs and adjustments.	
	4.	Describe t	he effect of altitude change and severe weather conditions.	
C.	Elec	tronic Fue	I Systems	3%
	Out	come:	Explain the operating principles and design features of an electronic fuel system.	
	1.	Describe v	various types of electronic fuel systems.	
	2.	Identify the	e components of each type of electronic fuel systems.	
	3.	Describe t	he operation of an electronic fuel system.	
SEC	TION	FOUR:	DC FUNDAMENTALS)%
A.	Star	ting Syste	ms19	3 %
	Out	come:	Demonstrate a working knowledge of a starting system.	
	1.	Describe o	components, designs and operating principles of starter systems.	
	2.	Diagnose	starting system problems utilizing a starter load test.	
	3.	Repair sta	rting system problems.	

В.	Med	hanical Ge	enerators Systems	19%					
	Out	tcome:	Demonstrate a working knowledge of a dc charging system.						
	1.	Identify the	e parts and output of a 12 V dc alternator.						
	2.	Explain th	e principle of operation and types of alternators.						
	3.	Demonstra	ate diagnosis of alternator electrical and mechanical faults.						
	4.	Describe of	common regulator types, function and factors impacting operation.						
	5.	Demonstr	ate testing and precautions of regulators and circuits.						
	6.	Trace circ	uits utilizing schematic diagrams and test equipment.						
	7.	Define cor	mmon charging system terminology.						
	8.	Overhaul	an alternator.						
C.	Batt	ery Funda	mentals	6%					
	Out	tcome:	Perform battery maintenance, testing and storage.						
	1.	List safety	precautions and procedures for boosting and charging batteries.						
	2.	Describe r	multiple battery circuits in relation to connections and battery compatibility.						
D.	DC Electrical Circuits25%								
	Out	tcome:	Demonstrate a working knowledge of dc theory.						
	1.	Explain the	e relationship between the structure of the atom and the flow of electrons.						
	2.	Define qua	antity, express symbols and units of measurement.						
	3.	Perform ca	alculations using Ohm's Law.						
	4.	Construct	circuits and make voltage, current and resistance measurements.						
	5.	Identify ap	oplications of series, parallel and series-parallel circuits.						
	6.	Define Kir	choff's Laws.						
	7.	Measure a	a circuit to demonstrate Kirchoff's current and voltage laws.						
	8.	Define res	sistance and what factors impact it.						
	9.	Define ins	ulators.						
	10.	Describe t	the components, purpose, location, operation and diagnosis of an electronic circuit.						
	11.	Describe t	the loads controlled by the electronic circuits.						
	12.	Diagnose	problems using diagrams and test equipment.						
	13.	Describe t	the importance of heat dissipation in electrical circuits.						
	14.	Describe r	magnetic attraction and repulsion.						
	15.	Describe 6	electromagnetism and related terms.						
	16.	Describe t	the methods used to generate ac and dc.						
	17.	Describe t	the relationship between cycles, poles and frequency.						
	18.	Identify the	e basic construction, operation and calculations for transformers.						

E.	Wir	ing Diagran	ns	25%				
	Ou	tcome:	Demonstrate a working knowledge of electrical circuits in service work.					
	1.	Identify the	e components within transport systems heating and cooling circuits.					
	2.	Demonstra	ate troubleshooting circuits using schematics, diagrams and testing procedures.					
	3.	Demonstra	ate test procedures for low and high voltage systems.					
	4.	Demonstra	ate test procedures for multi-voltage systems.					
F.	Mic	roprocesso	ors	6%				
	Ou	tcome:	Demonstrate a working knowledge of control circuits in service work.					
	1.	Identify the	e components and their location within microprocessors.					
	2.	Describe t	he electrostatic discharge precautions for microprocessors service.					
	3.	Demonstra	ate the procedures to access the operating screens from the microprocessor.					
	4. Explain the purpose of software revisions and the upgrade methods.							
	5.	Interpret th	ne alarm codes and clearing procedures.					
	6.	Download	data from onboard microprocessor to a computer.					
	7.	Explain the	e security levels in microprocessors.					
SEC	TION	I FIVE	REFRIGERANT CONCEPTS	20%				
A.	Compressors							
	Ou	tcome:	Perform compressor diagnosis and repairs.					
	1.	Describe o	compressor's components and designs.					
	2.	Describe r	efrigerant flow through a compressor.					
	3.	Describe t	he lubrication of compressors.					
	4.	Demonstra	ate diagnosis and reconditioning procedures.					
	5.	Identify dir	rection of rotation for lubrication.					
	6.	Describe o	compressor shaft seals replacement.					
В.	Ref	rigeration C	Components	20%				
	Ou	tcome:	Describe the purpose of refrigeration components.					
	1.	Describe t	he operation of a refrigeration system using a diagram.					
	2.	Identify the	e components and their functions.					
	3.	Describe t	he purpose, types, construction and air flow of an evaporator.					
	4.	Explain ho	w distributors avoid excessive pressure drops in a system.					
	5.	Describe t	he purpose, types and procedures for service valves.					
	6.	Identify the	e purpose, types, construction, location and operation of suction-throttling valves.					
	7.	Explain the	e purpose of the pressure safety release valves.					
	8.	Recognize	e the types of pressure release devices.					
	9.	Describe t	he operating principles and applications of multiple evaporator systems.					

	10.	Explain th	ne difference between single and multiple evaporator systems.				
	11.	Describe	the operating principles and applications of multiple compressor systems.				
C.	Sys	tem Speci	fic Diagnostics	31%			
	Out	tcome:	Diagnose and repair mobile refrigeration systems.				
	1.	Demonstr	rate master check procedures to evaluate unit condition.				
	2.	Interpret i	manifold gauge readings for diagnostic purposes.				
	3.	Test syste	em operations to ensure superheating and sub-cooling conditions.				
	4.	Describe	the characteristics of a starving evaporator.				
	5.	Describe	the characteristics of a flooded evaporator.				
	6.	Test 3-wa	ay valve operation and service.				
	7.	Test flow	control devices and service.				
	8.	Replace f	aulty valves in a refrigeration system.				
	9.	Diagnose	a distributor tube.				
	10.	Describe	the heating method for accumulators.				
	11.	Adjust su	ction pressure to specifications.				
	12.	Verify opt	imal performance of system.				
	13.	Identify co	omponents that can be replaced after a pump down versus an evacuation.				
D.	Soldering and Brazing25%						
	Out	tcome:	Perform soldering and brazing operations.				
	1.	Describe	the characteristics, composition, and safe handling of welding gases and cylinders.				
	2.	Identify th	ne oxyfuel equipment parts, function and maintenance.				
	3.	Demonstr	rate oxyfuel leak detection, adjusting, operating, and shutdown procedures.				
	4.	Describe	the problems and corrective procedures of oxyfuel equipment use.				
	5.	Describe	solder and brazing materials.				
	6.	Describe	repairs that can be achieved with brazing and soldering.				
	7.	Demonstr	rate soldering and brazing.				
	8.	Demonstr	rate tubing flaring, repairs, bending, swedging and pinching.				
	9.	Describe	the purpose and procedure for annealing copper tubing.				
E.	Fac	tors Affect	ting System Performance	12%			
	Out	tcome:	Describe physical factors that impact refrigeration.				
	1.	Describe	the purpose of insulation and seals within the industry.				
	2.	Identify p	roduct temperature for loading, heat removal and temperature stabilization.				
	3.		the principles, methods, conditions and precautions for food and other cargo during load ion and air circulation.	ding,			
	4.	Calculate	heat removal for the pre-cooling, heat removal, temperature stabilization and wall heat	gain.			
	5	Fill out ma	anufacturer's forms for load estimating				

SECTION SIX:......SECONDARY SYSTEMS.......12% Liquid Propane Gas (LPG) Heating Systems21% A. Outcome: Perform service and maintenance on liquid propane gas heating systems. 1. Describe construction and operating principles of catalytic heaters. 2. Describe safety precautions when lighting, servicing and installing heating systems. 3. Demonstrate handling, storage, testing procedures and precautions. 4. Describe insulators, isolators, and expansion devices. 5. Describe types and operation of mobile storage tanks. 6. Describe storage tank mounting and security precautions. 7. Describe the capacity and filling of L.P.G. tanks. 8. Demonstrate servicing, testing and adjustments of heating systems. Liquid Fuel Fired Heating Systems64% Outcome: Perform service and maintenance on liquid fired heating systems. 1. Describe construction and operating principles of fuel fired heaters. 2. Describe safety precautions for servicing and installing fuel fired heater systems. 3. Demonstrate testing procedures and precautions. 4. Demonstrate the servicing, testing and adjustment of fuel fired heater systems. Auxiliary Power Systems15% Outcome: Demonstrate service and repair of auxiliary power systems. Describe purpose, construction and operating principles of auxiliary power units. 2. Describe the conditions and regulations that require auxiliary power units. 3. Describe the diagnosis and service of auxiliary power units. Workplace Coaching Skills100% A. Outcome: Use coaching skills when training an apprentice.

Calculate product and total loads considering cargo safety.

Describe the process for coaching an apprentice.

6.

THIRD PERIOD TECHNICAL TRAINING TRANSPORT REFRIGERATION TECHNICIAN TRADE CURRICULUM GUIDE

UPON SUCCESSFUL COMPLETION OF THIS COURSE THE APPRENTICE SHOULD BE ABLE TO PERFORM THE FOLLOWING OUTCOMES AND OBJECTIVES.

SEC	CTION	ONE:	BASIC REFRIGERATION AND AIR CONDITIONING	54%
A.	Evaporator Fe		eed Controls and Refrigeration Effect	12%
	Ou	tcome:	Service evaporator feed controls on refrigeration equipment.	
	1.	Define t	erms related to evaporator feed control and refrigeration effect.	
	2.	Describ	e types and operations of evaporator feed controls.	
	3.	Describ	e components of evaporator feed control systems.	
	4.	Describ	e control characteristics of expansion control devices.	
	5.	Describ	e methods of producing the refrigeration effect.	
	6.	Determi	ine the proper metering device for various applications.	
	7.	Demons	strate troubleshooting techniques of metering devices.	
	8.	Measure	e superheat and adjust a thermal expansion valve (TXV).	
В.	Auto	omatic Flo	ow Controls and Applications	8%
	Out	tcome:	Use automatic flow controls in a refrigeration system.	
	1.	Define t	erms related automatic flow controls.	
	2.	Describ	e components of automatic flow controls.	
	3.	Describ	e the operation of automatic flow controls.	
	4.	Describ	e the application of automatic flow controls.	
	5.	Demons	strate service of automatic flow controls.	
C.	Refr	igeration	Accessories	3%
	Out	tcome:	Maintain and repair refrigeration accessories.	
	1.	Define t	erms related to refrigeration accessories.	
	2.	Describ	e components related to refrigeration accessories.	
	3.	Describ	e the operation of various refrigeration accessories.	
	4.	Describ	e the application of various refrigeration accessories.	
D.	Con	npressors	·	11%
	Out	tcome:	Perform compressor diagnosis and repairs.	
	1.	Define t	erms related to compressors and refrigeration circuit components.	
	2.	Describ	e types of compressors used in refrigeration and air conditioning systems.	
	3.	Describ	e the components and operating characteristics of compressors.	
	4.	Define t	erms related to compressor mechanical components.	
	5. Describ		e compressor components and their applications.	

	о.	Describe	e the compression process and the flow of gas through the compressor.	
	7.	Describe	e types of compressor lubrication.	
	8.	Describe	e mechanical and electrical oil failure controls.	
	9.	Describe	e capacity control systems.	
	10.	Label a	compressor circuit.	
	11.	Disasse	mble and reassemble a small semi hermetic compressor.	
	12.	Identify of	direction of rotation for lubrication.	
	13.	Install, w	vire and check the operation of an oil failure control.	
E.	Evap	oorators a	and Condensers	5%
	Out	come:	Explain the operation and components of evaporators and condensers.	
	1.	Define to	erms related to evaporators and condensers.	
	2.	Describe	e evaporator components and their applications.	
	3.	Describe	e evaporator defrost methods.	
	4.	Describe	e condenser components and their applications.	
	5.	Describe	e service and repair of evaporators and condensers.	
	6.	Describe	e how distributors avoid excessive pressure drops in a system.	
	7.	Demons	strate evaporator and condenser sizing and balancing methods.	
F.	Evap	oorative C	Condensers and Cooling Towers	5%
	Out	come:	Explain the operation and components of evaporative condensers and cooling towers.	
	1.	Define to	erms related to evaporative condensers and cooling towers.	
	2.	Describe	e evaporative condenser components and their applications.	
	3.	Describe	e cooling tower components and their applications.	
	4.	Describe	e water treatment procedures as it relates to cooling towers.	
	5.	Describe	e seasonal operation of cooling towers.	
G.	Syst	em Instali	l and Commissioning2	28%
	Out	tcome:	Performs system install and commissioning of refrigeration and air conditioning (RAC) systems.	
	1.	Describe	e methods of selecting and locating system components.	
	2.	Describe	e methods of mounting condensing units and evaporators.	
	3.	Describe	e methods of connecting piping and accessories to an RAC system.	
			e methods of connecting piping and accessories to an RAC system. re the use of various piping materials.	
	3.	Compare		
	3. 4.	Compare Sketch a	re the use of various piping materials.	
	3. 4. 5.	Compare Sketch a	re the use of various piping materials. an electrical wiring schematic for an RAC system.	

	8.	Start-up	an RAC system.				
	9.	Complete	e a commissioning report for an RAC system.				
Н.	Syst	em Calcul	ation and Analysis19%				
	Out	come:	Troubleshoot, calculate and analyze refrigeration and air conditioning (RAC) systems.				
	1.	Define th	ermal dynamics as it pertains to service and troubleshooting of RAC systems.				
	2.	Describe	pressure enthalpy diagrams as they relate to various RAC system conditions.				
	3.	Describe	formulas used in analyzing system thermal dynamics.				
	4.	•	and troubleshoot RAC systems using pressure enthalpy diagrams and system thermal formulas.				
	5.	Use tools	and charts to troubleshoot RAC systems under various conditions.				
I.	Retr	ofitting an	d Conversions6%				
	Out	come:	Perform retrofitting and conversions on RAC equipment.				
	1.	Describe	steps used in designing and retrofitting or converting RAC systems.				
	2.	Describe	the hazards related to retrofitting or converting RAC systems.				
	3.	Describe	start-up and monitoring steps of a retrofitted or converted RAC system.				
J.	Split Systems						
	Out	come: Se	rvice split cooling systems.				
	1.	Identify t	ne components used in a typical cooling system.				
	2.	Describe	the operation of a typical cooling system.				
	3.	ldentify t system.	ne requirements for combining a basic cooling system with an existing forced-air heating				
	4.	Observe	the operation of a combined heating and cooling system.				
SEC	TION	TWO:	13%				
A.	Natu	ıral Draft E	Burner Adjustments and Gas Consumption189				
	Outcome:		Install and adjust pressure controls and gas-fired burners using ratings plates, gas meters, manometers and mechanical gauges to optimize consumption for gas-fired appliances.				
	1.	Determin	e appliance settings using rating plates, altitude designation and listed approval agencies.				
	2.	CAN/CS	the requirements from the CAN/CSA B149.1 Natural Gas and Propane Installation Codes, A B149.2 Propane Storage and Handling Code and the Plumbing and Gas Safety Service pertaining to gas appliance and adjustments and installer's responsibilities.				
	3.	Define pa	arts of a burner and burner terminology.				
	4.	Measure units.	manifold pressures to determine gas consumption of burners in both imperial and metric				
	5.	Adjust or	ifices and manifold pressures to optimize gas consumption.				

Identify meter dials and meter indexes in both metric and imperial units.

6.

	7. Explain principles of low pressure gas meter clocking.							
	8.	Calculate gas consumption using timed meter readings.						
В.	Pilo	ts, Pilot E	Burners, Thermocouples and Thermopiles19%					
	Ou	tcome:	Service pilots, pilot burners, thermocouples and thermopiles.					
	1.	Describ	e pilot burner types and terminology.					
	2. Describe characteristics of pilot burners							
	3.	Identify	parts of aerated and non-aerated pilot burners.					
	4.	State th	e primary purpose of a gas pilot					
	5.	Describ	e burner ignition tests performed on all pilots.					
	6.	Describ	e operating principles of thermocouples and thermopiles.					
	7.	Describ	e the operation tests performed on proven pilots energizing a thermocouple.					
	8.	Describ	e methods of installing thermocouples and thermopiles on standard circuits.					
	9.	Describ	e operational tests performed on thermocouples and thermopiles.					
	8. [e diagnostic tests for thermocouples					
	9.	State ca	auses for thermocouple failures.					
C.	Pres	Pressure Regulators and Orifices						
	Ou	tcome:	Service gas pressure controls and burner orifices and adjust gas line pressure.					
	1.	Describ	e types, operating principles and applications or various gas pressure regulators.					
	2.	ldentify regulate	regulator sizing tables and list and describe correct installation procedures for various ors.					
	3.	Describ	e maintenance procedures for various regulators.					
	4.	Describ	e pressure regulator problems and corrective procedures.					
	5.	Identify	types of orifices.					
	6.	Use orifice sizing charts to determine orifice sizing for specific gas consumptions and press metric and imperial units.						
	7.	Drill an	orifice according to specific gas requirements					
	8.	Demon	strate procedures for testing an orifice and adjust manifold pressure on HVAC equipment.					
D.	Intro	oduction	to Flues, Draft Hoods and Vent Connections19%					
	Ou	tcome:	Service draft hoods and vent connectors.					
	1.	Define t	terminology pertaining to flues and draft control devices.					
	2.	Describ	e flue collars and types of draft hoods including installation procedures.					
	3.		regulations pertaining to the sizing, installation and use of draft hoods on gas burning ces as listed in the CAN/CSA B149.1 <i>Natural Gas and Propane Installation Code and PATA</i> .					
	4.	Describ	e installation procedures for single and double acting barometric dampers.					
	5.		regulations pertaining to the selection, sizing, installation and use of draft control devices as ed in the CAN/CSA B149.1 <i>Natural Gas and Propane Installation Code and STANDATA</i> .					

Describe vent connectors and installation techniques.

6.

	7.	•	egulations pertaining to vent connectors as listed in the CAN/CSA B149.1 <i>Natural Gas and Installation Code and STANDATA</i> .
	8.	Size vent	connectors using minimum size rules.
E.	Sing	le Line Dra	wings13%
	Out	come:	Draw and interpret basic orthographic and isometric drawings.
	1.	Draw and	label the three views of orthographic drawings.
	2.	Draw sec	tions of a simple object.
	3.		label orthographic single-line piping drawings with 90° elbows and tees and convert to drawings.
	4.	Draw and	label isometric single-line piping drawings containing 90° elbows and tees.
F.	Heat	ing with Al	ternative Methods6%
	Out	come:	Service alternative heating systems.
	1.	Describe	alternative heat sources.
	2.	Describe	alternative heat source systems.
SEC	TION	THREE:	BASIC CONTROLS
A.	Princ	ciples of A	utomatic Heating and Cooling Controls18%
	Out	come:	Explain the basic principles for automatic controls for heating and cooling systems.
	1.	Describe t	he basic requirements of heating and cooling systems.
	2.	Describe t	he control components of a basic forced-air heating system.
	3.	Interpret b	pasic electrical diagrams used to show the function of a heating or cooling control system.
	4.	Identify co	de requirements relating to the electrical installation of heating and cooling systems.
В.	Tem	perature S	ensing and Control Devices13%
	Out	come:	Service temperature sensing and control devices.
	1.	Identify of	perating characteristics of temperature-sensing devices.
	2.	Describe	the application of temperature-sensing devices used in heating and cooling systems.
	3.	Describe	the functions of thermostats in heating and cooling systems.
C.	Basi	c Gas-Fire	d Forced-Air Heating Systems19%
	Out	come:	Connect and troubleshoot basic 24 V and 120 V gas-fired, forced-air heating systems.
	1.	Identify th	e components used in a basic gas-fired, forced-air heating system.
	2.	Describe	the operation of a domestic heating system using a 24 V control circuit.
	3.	Describe	the operation of a unit heater using a 120 V control circuit.
	4.	Describe system.	the installation and operation of a fan interlock system on a residential forced air heating

	5.	Connec	and verify a 24 V and 120 V control heating system.			
	6.	Diagnos	e and repair 24 V and 120 V heating systems.			
D.	Mid/	High-Effic	ciency / Gas-Fired / Forced-Air Heating Systems19	%		
	Out	come:	Connect and troubleshoot mid and high-efficiency, gas-fired, forced-air heating systems.			
	1.	Identify	the components of a mid-efficiency, gas-fired, forced-air heating system.			
	2.	Troubles	shoot a mid-efficiency, gas-fired, forced-air heating system.			
	3.	Troubles	shoot a high-efficiency, gas-fired, forced-air heating system.			
	4.	Describe systems	e the purpose of and application of auxiliary equipment used with gas-fired, forced-air heatin s.	g		
	5.	Connect furnace.	and verify the operation of a direct spark ignition system in a high-efficiency gas-fired			
	6.	Connect furnace.	and verify the operation of a hot surface ignition system in a high-efficiency gas-fired			
E.	Basi	c Hot Wa	ter Heating Systems6	%		
	Out	come:	Troubleshoot basic hot water heating systems.			
	1.	Describe	e the operation of a basic hot water heating system.			
	2.	Identify	the purpose and application of the components of a hot water heating system.			
	3.	Analyze	and troubleshoot the operation of a hot water heating system.			
F.	HVAC Units25%					
	Out	come:	Troubleshoot a basic commercial heating and cooling control circuit for an HVAC unit.			
	1.	Describe	e the components of an HVAC unit.			
	2.	Describe	e the operation of an HVAC unit.			
	3.	Describe	e the applications of thermostats.			
	4.	Describe	e procedures for troubleshooting a HVAC unit.			
	5.	Troubles	shoot the operation of a HVAC unit.			
SEC	TION	FOUR:	BASIC ELECTRICAL THEORY20%)		
A.	Sing	le-Phase	Transformers8	%		
	Out	come:	Connect single-phase transformers on refrigeration RAC equipment.			
	1.	Describe	e the construction of a mutual induction transformer.			
	2.	Describe	e the construction of a single winding transformer.			
	3.	Determi	ne the transformation ratio and volts-per-turn value of a transformer.			
	4.	Describe	e transformer operation.			
	5.	Describe	e the operation of current limiting (Class 2) transformers.			
	6.	Describe	e the efficiencies of a transformer			

	8.	Describ	Describe the connection options for a multiple winding transformer.					
	9.	Identify	connect and perform tests on transformers.					
В.	Sing	jle Phase	Motors					
	Out	tcome:	Connect and service split-phase, single phase motors.					
	1.	Describ	e the components, principles of operation and applications of a resistance split-phase motor.					
	2.	Describ	e the components, principles of operation and applications of a capacitor-start motor.					
	3.	Draw co	onnection diagrams for single phase motors.					
	4.	Describ motor.	e the components, principle of operation and applications of a permanent-split-capacitor					
	5.	Describ motor.	e the components, principle of operation and applications of a capacitor start/capacitor run					
	6.	Connec	t and analyze a dual voltage motor and reverse it.					
	7.	Connec	t and analyze a multispeed single phase motor.					
C.	Con	npressors	and Electrical Circuit Components21%					
	Out	tcome:	Connect and service compressors and circuit components.					
	1.	Describ	e motor starters and relays of compressors.					
	2.	Describ	e motor protection used for compressors.					
	3.	Sketch	a motor starter circuit.					
	4.	Sketch	a compressor overload circuit.					
	5.	Connec	t a single phase compressor circuit.					
	6.	Trouble	shoot motor failures and clean up procedures.					
D.	Thre	ee Phase	Fundamentals13%					
	Out	tcome:	Service three phase electrical systems on RAC equipment					
	1.	Describ	e the difference between single phase power and three phase power.					
	2.	Describ	e the generation of the phase voltages of a three phase system.					
	3.	Describ	e the phase sequence of three phase sine waves.					
	4.	Describ	e the advantages and disadvantages of three phase power over single phase power.					
E.	Trou	ubleshoo	ting Electrical Problems21%					
	Out	tcome:	Solve electrical related problems in refrigeration and HVAC circuits.					
	1.	Describ	e electrical problems common to refrigeration and HVAC circuits.					
	2.	Describ	e methods used to test circuits in refrigeration and HVAC circuits.					
	3.	Describ	e the possible effects of over voltage and under voltage on motors.					
	4.	Describ	e the importance of full load amps, lock rotor amps and free running amps.					
	5.	Use wir	ing diagrams to troubleshoot refrigeration and HVAC circuits.					
	6.	Diagno	se electrical motor problems using systematic test flowcharts.					

7.

Calculate the efficiency of a transformer.

	7.	Troubles	hoot motors that are operating at higher than normal temperatures.	
	8.	Perform	tests on other electrical devices related to motor circuits.	
F.	Intro	duction to	Canadian Electrical Code4	۱%
	Out	tcome:	Apply the Canadian Electrical Code (CEC) Part I, and the Alberta Electrical STANDATA to verify electrical installations in Alberta.	
	1.	Describe	the purpose of the CEC Part 1.	
	2.	Describe	the procedures for the acceptance of the CEC by the provinces and the local authorities.	
	3.	Describe	the function of the electrical STANDATA.	
	4.	Describe	the organizational layout of the CEC.	
	5.	Identify t	hose responsible for an electrical installation.	
G.	Clas	s 1 and Cl	ass 2 Circuits4	۱%
	Out	tcome:	Verify CEC requirements for Class 1 and Class 2 Circuits on RAC equipment.	
	1.	Define th	e terms from the CEC on Class 1 and Class 2 circuits.	
	2.	Identify t	he requirements for Class 1 and Class 2 circuits.	
	3.	Identify t	he Class 2 circuits as they apply to industry.	

Apprenticeship and Industry Training

Alberta Trades. World Ready.